Get our latest book recommendations, author news, competitions, offers, and other information right to your inbox.
Practical Data Science with R, Second Edition
By John Mount and Nina Zumel
Published by Manning
Distributed by Simon & Schuster
Table of Contents
About The Book
Summary
Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support.
About the technology
Evidence-based decisions are crucial to success. Applying the right data analysis techniques to your carefully curated business data helps you make accurate predictions, identify trends, and spot trouble in advance. The R data analysis platform provides the tools you need to tackle day-to-day data analysis and machine learning tasks efficiently and effectively.
About the book
Practical Data Science with R, Second Edition is a task-based tutorial that leads readers through dozens of useful, data analysis practices using the R language. By concentrating on the most important tasks you’ll face on the job, this friendly guide is comfortable both for business analysts and data scientists. Because data is only useful if it can be understood, you’ll also find fantastic tips for organizing and presenting data in tables, as well as snappy visualizations.
What's inside
Statistical analysis for business pros
Effective data presentation
The most useful R tools
Interpreting complicated predictive models
About the reader
You’ll need to be comfortable with basic statistics and have an introductory knowledge of R or another high-level programming language.
About the author
Nina Zumel and John Mount founded a San Francisco–based data science consulting firm. Both hold PhDs from Carnegie Mellon University and blog on statistics, probability, and computer science.
Practical Data Science with R, Second Edition takes a practice-oriented approach to explaining basic principles in the ever expanding field of data science. You’ll jump right to real-world use cases as you apply the R programming language and statistical analysis techniques to carefully explained examples based in marketing, business intelligence, and decision support.
About the technology
Evidence-based decisions are crucial to success. Applying the right data analysis techniques to your carefully curated business data helps you make accurate predictions, identify trends, and spot trouble in advance. The R data analysis platform provides the tools you need to tackle day-to-day data analysis and machine learning tasks efficiently and effectively.
About the book
Practical Data Science with R, Second Edition is a task-based tutorial that leads readers through dozens of useful, data analysis practices using the R language. By concentrating on the most important tasks you’ll face on the job, this friendly guide is comfortable both for business analysts and data scientists. Because data is only useful if it can be understood, you’ll also find fantastic tips for organizing and presenting data in tables, as well as snappy visualizations.
What's inside
Statistical analysis for business pros
Effective data presentation
The most useful R tools
Interpreting complicated predictive models
About the reader
You’ll need to be comfortable with basic statistics and have an introductory knowledge of R or another high-level programming language.
About the author
Nina Zumel and John Mount founded a San Francisco–based data science consulting firm. Both hold PhDs from Carnegie Mellon University and blog on statistics, probability, and computer science.
Product Details
- Publisher: Manning (November 17, 2019)
- Length: 568 pages
- ISBN13: 9781638352747
Browse Related Books
Resources and Downloads
High Resolution Images
- Book Cover Image (jpg): Practical Data Science with R, Second Edition eBook 9781638352747