Skip to Main Content

Probabilistic Deep Learning

With Python, Keras and TensorFlow Probability

Published by Manning
Distributed by Simon & Schuster

About The Book

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

Summary
Probabilistic Deep Learning: With Python, Keras and TensorFlow Probability teaches the increasingly popular probabilistic approach to deep learning that allows you to refine your results more quickly and accurately without much trial-and-error testing. Emphasizing practical techniques that use the Python-based Tensorflow Probability Framework, you’ll learn to build highly-performant deep learning applications that can reliably handle the noise and uncertainty of real-world data.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
The world is a noisy and uncertain place. Probabilistic deep learning models capture that noise and uncertainty, pulling it into real-world scenarios. Crucial for self-driving cars and scientific testing, these techniques help deep learning engineers assess the accuracy of their results, spot errors, and improve their understanding of how algorithms work.

About the book
Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

What's inside

Explore maximum likelihood and the statistical basis of deep learning
Discover probabilistic models that can indicate possible outcomes
Learn to use normalizing flows for modeling and generating complex distributions
Use Bayesian neural networks to access the uncertainty in the model

About the reader
For experienced machine learning developers.

About the author
Oliver Dürr is a professor at the University of Applied Sciences in Konstanz, Germany. Beate Sick holds a chair for applied statistics at ZHAW and works as a researcher and lecturer at the University of Zurich. Elvis Murina is a data scientist.

Table of Contents

PART 1 - BASICS OF DEEP LEARNING

1 Introduction to probabilistic deep learning

2 Neural network architectures

3 Principles of curve fitting

PART 2 - MAXIMUM LIKELIHOOD APPROACHES FOR PROBABILISTIC DL MODELS

4 Building loss functions with the likelihood approach

5 Probabilistic deep learning models with TensorFlow Probability

6 Probabilistic deep learning models in the wild

PART 3 - BAYESIAN APPROACHES FOR PROBABILISTIC DL MODELS

7 Bayesian learning

8 Bayesian neural networks

About The Authors

Beate Sick holds a chair for applied statistics at ZHAW, and works as a researcher and lecturer at the University of Zurich, and as a lecturer at ETH Zurich.

Oliver Du¨rr is professor for data science at the University of Applied Sciences in Konstanz, Germany.

Product Details

  • Publisher: Manning (October 11, 2020)
  • Length: 296 pages
  • ISBN13: 9781638350408

Browse Related Books

Resources and Downloads

High Resolution Images